Source code for biff.scf.core

# coding: utf-8



# Third-party
from astropy import log as logger
import numpy as np
import scipy.integrate as si

# Project
from ._computecoeff import Snlm_integrand, Tnlm_integrand, STnlm_discrete, STnlm_var_discrete

__all__ = ['compute_coeffs', 'compute_coeffs_discrete']

[docs]def compute_coeffs(density_func, nmax, lmax, M, r_s, args=(), skip_odd=False, skip_even=False, skip_m=False, S_only=False, **nquad_opts): """ Compute the expansion coefficients for representing the input density function using a basis function expansion. Computing the coefficients involves computing triple integrals which are computationally expensive. For an example of how to parallelize the computation of the coefficients, see ``examples/parallel_compute_Anlm.py``. Parameters ---------- density_func : function, callable A function or callable object that evaluates the density at a given position. The call format must be of the form: ``density_func(x, y, z, M, r_s, args)`` where ``x,y,z`` are cartesian coordinates, ``M`` is a scale mass, ``r_s`` a scale radius, and ``args`` is an iterable containing any other arguments needed by the density function. nmax : int Maximum value of ``n`` for the radial expansion. lmax : int Maximum value of ``l`` for the spherical harmonics. M : numeric Scale mass. r_s : numeric Scale radius. args : iterable (optional) A list or iterable of any other arguments needed by the density function. skip_odd : bool (optional) Skip the odd terms in the angular portion of the expansion. For example, only take :math:`l=0,2,4,...` skip_even : bool (optional) Skip the even terms in the angular portion of the expansion. For example, only take :math:`l=1,3,5,...` skip_m : bool (optional) Ignore terms with :math:`m > 0`. S_only : bool (optional) Only compute the S coefficients. **nquad_opts Any additional keyword arguments are passed through to `~scipy.integrate.nquad` as options, `opts`. Returns ------- Snlm : float, `~numpy.ndarray` The value of the cosine expansion coefficient. Snlm_err : , `~numpy.ndarray` An estimate of the uncertainty in the coefficient value (from `~scipy.integrate.nquad`). Tnlm : , `~numpy.ndarray` The value of the sine expansion coefficient. Tnlm_err : , `~numpy.ndarray` An estimate of the uncertainty in the coefficient value. (from `~scipy.integrate.nquad`). """ lmin = 0 lstride = 1 if skip_odd or skip_even: lstride = 2 if skip_even: lmin = 1 Snlm = np.zeros((nmax+1, lmax+1, lmax+1)) Snlm_e = np.zeros((nmax+1, lmax+1, lmax+1)) Tnlm = np.zeros((nmax+1, lmax+1, lmax+1)) Tnlm_e = np.zeros((nmax+1, lmax+1, lmax+1)) nquad_opts.setdefault('limit', 256) nquad_opts.setdefault('epsrel', 1E-10) limits = [[0,2*np.pi], # phi [-1,1.], # X (cos(theta)) [-1,1.]] # xsi for n in range(nmax+1): for l in range(lmin, lmax+1, lstride): for m in range(l+1): if skip_m and m > 0: continue logger.debug("Computing coefficients (n,l,m)=({},{},{})" .format(n,l,m)) Snlm[n,l,m],Snlm_e[n,l,m] = si.nquad( Snlm_integrand, ranges=limits, args=(density_func, n, l, m, M, r_s, args), opts=nquad_opts) if not S_only: Tnlm[n,l,m],Tnlm_e[n,l,m] = si.nquad( Tnlm_integrand, ranges=limits, args=(density_func, n, l, m, M, r_s, args), opts=nquad_opts)
return (Snlm,Snlm_e), (Tnlm,Tnlm_e)
[docs]def compute_coeffs_discrete(xyz, mass, nmax, lmax, r_s, skip_odd=False, skip_even=False, skip_m=False, compute_var=False): """ Compute the expansion coefficients for representing the density distribution of input points as a basis function expansion. The points, ``xyz``, are assumed to be samples from the density distribution. Computing the coefficients involves computing triple integrals which are computationally expensive. For an example of how to parallelize the computation of the coefficients, see ``examples/parallel_compute_Anlm.py``. Parameters ---------- xyz : array_like Samples from the density distribution. Should have shape ``(n_samples,3)``. mass : array_like Mass of each sample. Should have shape ``(n_samples,)``. nmax : int Maximum value of ``n`` for the radial expansion. lmax : int Maximum value of ``l`` for the spherical harmonics. r_s : numeric Scale radius. skip_odd : bool (optional) Skip the odd terms in the angular portion of the expansion. For example, only take :math:`l=0,2,4,...` skip_even : bool (optional) Skip the even terms in the angular portion of the expansion. For example, only take :math:`l=1,3,5,...` skip_m : bool (optional) Ignore terms with :math:`m > 0`. compute_var : bool (optional) Also compute the variances of the coefficients. This does not compute the full covariance matrix of the coefficients, just the individual variances. TODO: separate function to compute full covariance matrix? Returns ------- Snlm : float The value of the cosine expansion coefficient. Tnlm : float The value of the sine expansion coefficient. """ lmin = 0 lstride = 1 if skip_odd or skip_even: lstride = 2 if skip_even: lmin = 1 Snlm = np.zeros((nmax+1, lmax+1, lmax+1)) Tnlm = np.zeros((nmax+1, lmax+1, lmax+1)) if compute_var: Snlm_var = np.zeros((nmax+1, lmax+1, lmax+1)) Tnlm_var = np.zeros((nmax+1, lmax+1, lmax+1)) # positions and masses of point masses xyz = np.ascontiguousarray(np.atleast_2d(xyz)) mass = np.ascontiguousarray(np.atleast_1d(mass)) r = np.sqrt(np.sum(xyz**2, axis=-1)) s = r / r_s phi = np.arctan2(xyz[:,1], xyz[:,0]) X = xyz[:,2] / r for n in range(nmax+1): for l in range(lmin, lmax+1, lstride): for m in range(l+1): if skip_m and m > 0: continue logger.debug("Computing coefficients (n,l,m)=({},{},{})".format(n,l,m)) Snlm[n,l,m], Tnlm[n,l,m] = STnlm_discrete(s, phi, X, mass, n, l, m) if compute_var: Snlm_var[n,l,m], Tnlm_var[n,l,m] = STnlm_var_discrete(s, phi, X, mass, n, l, m) if compute_var: return (Snlm,Snlm_var), (Tnlm,Tnlm_var) else:
return Snlm, Tnlm